

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/13

Paper 1 Multiple Choice October/November 2011

45 Minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

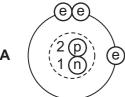
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

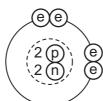
Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

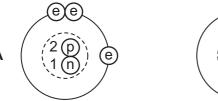
You may use a calculator.

This document consists of 16 printed pages.

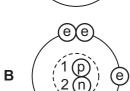


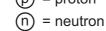

- 1 In which substance are the particles close together and slowly moving past each other?
 - Α air
 - В ice
 - C steam
 - D water
- Two isotopes of helium are ${}^3_2\text{He}$ and ${}^4_2\text{He}$. 2

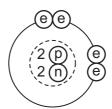
Which two diagrams show the arrangement of particles in these two isotopes?

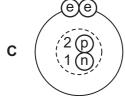

 $_{2}^{3}He$

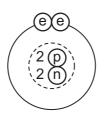
⁴₂He

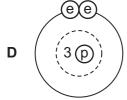


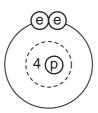


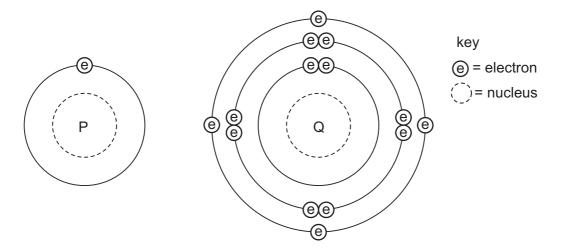












3 The diagram shows the electronic structures of atoms P and Q.

P and Q combine to form a molecule.

What is the formula of this molecule?

- A PQ₄
- **B** PQ
- \mathbf{C} P_2Q
- \mathbf{D} P_4Q

4 A student was provided with only a thermometer, a stopwatch and a beaker.

What could the student measure?

- A 10.5 g solid and 24.8 cm³ liquid
- **B** 10.5 g solid and 25 °C
- C 24.8 cm³ liquid and 45 seconds
- **D** 25 °C and 45 seconds
- 5 Mixture 1 contains sand and water.

Mixture 2 contains salt and water.

Which method of separation could be used to obtain each of the required products from each mixture?

	mixture 1		mixture 2	
	to obtain sand	to obtain water	to obtain salt	to obtain water
Α	crystallisation	distillation	filtration	filtration
В	crystallisation	filtration	filtration	distillation
С	filtration	distillation	crystallisation	filtration
D	filtration	filtration	crystallisation	distillation

6 Concentrated aqueous potassium bromide solution is electrolysed using inert electrodes.

The ions present in the solution are K⁺, Br⁻, H⁺ and OH⁻.

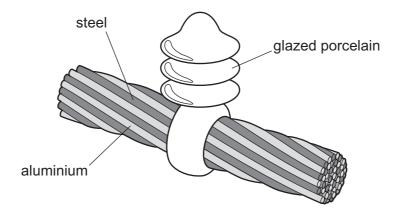
To which electrodes are the ions attracted during this electrolysis?

	attracted to anode	attracted to cathode
Α	Br⁻ and K⁺	H [⁺] and OH [−]
В	Br ⁻ and OH ⁻	H⁺ and K⁺
С	H⁺ and K⁺	Br ⁻ and OH ⁻
D	H [⁺] and OH [⁻]	Br [−] and K [⁺]

7 Metals could be extracted from their molten chlorides using electrolysis.

Which substances are formed at each electrode?

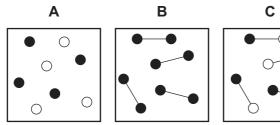
	anode	cathode
Α	chlorine	hydrogen
В	chlorine	metal
С	hydrogen	metal
D	metal	chlorine

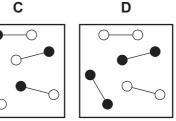

8 The table describes the structures of four particles.

particle	number of protons	number of neutrons	number of electrons
0	8	8	8
O ²⁻	8	8	X
Na	11	Y	11
Na⁺	11	12	Z

What are the correct values of **X**, **Y** and **Z**?

	Х	Y	Z
Α	9	11	10
В	9	11	11
С	10	12	10
D	10	12	11


9 The diagram shows a section of an overhead power cable.



Which statement explains why a particular substance is used?

- A Aluminium has a low density and is a good conductor of electricity.
- **B** Porcelain is a good conductor of electricity.
- C Steel can rust in damp air.
- **D** Steel is more dense than aluminium.
- **10** Two elements, represented by and ●, form a compound.

Which diagram shows molecules of the compound?

11 The relative formula mass, M_r , of copper(II) sulfate, CuSO₄, is 160.

Which mass of sulfur is present in 160 g of copper(II) sulfate?

- **A** 16g
- **B** 32g
- **C** 64 g
- **D** 128 g

12 The sign \rightleftharpoons is used in some equations to show that a reaction is reversible.

Two incomplete equations are given.

	reactants	products	
P CoCl ₂ + 2H ₂ O		CoCl ₂ .2H ₂ O	
Q	C + O ₂	CO_2	

For which of these reactions can a ← sign be correctly used to complete the equation?

	Р	Q
Α	✓	✓
В	✓	X
С	x	✓
D	X	X

13 Which fuel needs oxygen in order to produce heat energy and which type of reaction produces the energy?

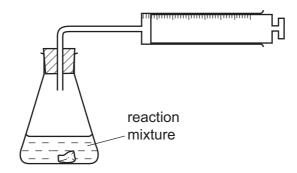
	fuel	type of reaction	
Α	a radioactive isotope	endothermic	
В	a radioactive isotope	exothermic	
С	hydrogen	endothermic	
D	hydrogen	exothermic	

14 Some reactions are listed.

methane + oxygen → carbon dioxide + water
sodium + water → sodium hydroxide + hydrogen
magnesium + hydrochloric acid → magnesium chloride + hydrogen

Which word correctly describes all of these reactions?

A combustion


B endothermic

C exothermic

D neutralisation

© UCLES 2011 0620/13/O/N/11

- 15 Which type of reaction always forms a salt and water?
 - A exothermic
 - **B** neutralisation
 - **C** oxidation
 - D polymerisation
- **16** An experiment to determine the rate of a chemical reaction could be carried out using the apparatus shown.

Which reaction is being studied?

A
$$Cl_2 + 2KBr \rightarrow 2KCl + Br_2$$

B Mg +
$$H_2SO_4 \rightarrow MgSO_4 + H_2$$

C NaC
$$l$$
 + AgNO $_3$ \rightarrow NaNO $_3$ + AgC l

D NaOH + HC
$$l \rightarrow$$
 NaC l + H₂O

17 Copper(II) carbonate reacts with dilute sulfuric acid.

$$CuCO_3(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + CO_2(g) + H_2O(l)$$

The speed of the reaction can be changed by varying the conditions.

Which conditions would always increase the speed of this chemical reaction?

- 1 Increase the concentration of the reactants.
- 2 Increase the size of the pieces of copper(II) carbonate.
- 3 Increase the temperature.
- 4 Increase the volume of sulfuric acid.
- **A** 1, 3 and 4 **B** 1 and 3 only **C** 2 and 3 **D** 3 and 4 only

18 The table shows some properties of two elements in Group VII of the Periodic Table.

element	state at 20 °C	density/g per cm ³	melting point/°C
chlorine	gas	0.0032	-101
bromine	liquid	3.1	-7

Which properties is fluorine likely to have?

	state at 20°C	density/g per cm ³	melting point/°C
Α	gas	0.0017	-220
В	gas	0.17	–188
С	liquid	0.0017	-220
D	liquid	0.17	–188

19 The results of three tests on a solution of compound **X** are shown.

test	result
aqueous sodium hydroxide added	white precipitate formed, soluble in excess
aqueous ammonia added	white precipitate formed, soluble in excess
dilute hydrochloric acid added	bubbles of gas

What is compound X?

- A aluminium carbonate
- B aluminium chloride
- C zinc carbonate
- **D** zinc chloride

- 20 An element has the following properties.
 - It forms coloured compounds.
 - It acts as a catalyst.
 - It melts at 1539 °C.

In which part of the Periodic Table is the element found?

- A Group I
- **B** Group IV
- C Group VII
- **D** transition elements
- 21 An alloy contains copper and zinc.

Some of the zinc has become oxidised to zinc oxide.

What is the result of adding an excess of dilute sulfuric acid to the alloy?

- **A** A blue solution and a white solid remains.
- **B** A colourless solution and a pink/brown solid remains.
- **C** The alloy dissolves completely to give a blue solution.
- **D** The alloy dissolves completely to give a colourless solution.
- 22 Which property is **not** characteristic of a base?
 - **A** It reacts with a carbonate to form carbon dioxide.
 - **B** It reacts with an acid to form a salt.
 - **C** It reacts with an ammonium salt to form ammonia.
 - **D** It turns universal indicator paper blue.
- **23** Statement 1: Helium is a reactive gas.

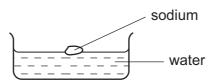
Statement 2: Helium can be used to fill balloons.

Which is correct?

- **A** Both statements are correct and statement 2 explains statement 1.
- **B** Both statements are correct but statement 2 does not explain statement 1.
- C Statement 1 is correct but statement 2 is incorrect.
- **D** Statement 2 is correct but statement 1 is incorrect.

24 A liquid turns white anhydrous copper sulfate blue and has a boiling point of 103°C.

Which could be the identity of the liquid?


- A alcohol
- **B** petrol
- **C** salt solution
- **D** pure water
- **25** Alloy X is strong and has a low density.

Alloy Y is heavy but is resistant to corrosion.

Which could be uses of X and Y?

	bridge supports	aircraft	overhead cables
Α	X	Х	Υ
В	X	Y	Υ
С	Υ	Х	Х
D	Υ	Υ	X

26 When sodium reacts with water, a solution and a gas are produced.

The solution is tested with litmus paper and the gas is tested with a splint.

What happens to the litmus paper and to the splint?

	litmus paper	splint
Α	blue to red	glowing splint relights
В	blue to red	lighted splint 'pops'
С	red to blue	glowing splint relights
D	red to blue	lighted splint 'pops'

© UCLES 2011 0620/13/O/N/11

- 27 Which statements are correct?
 - 1 Metals are often used in the form of alloys.
 - 2 Stainless steel is an alloy of iron.
 - 3 Alloys always contain more than two metals.
 - **A** 1 and 2 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3
- **28** A chemical engineer plans to produce hydrochloric acid.

Which metal is best for the reaction container?

- A copper
- **B** iron
- **C** magnesium
- **D** zinc
- 29 Which statement is true about all metals?
 - **A** They are attracted to a magnet.
 - **B** They are weak and brittle.
 - **C** They may be used to form alloys.
 - **D** They react with water.
- **30** A metal is extracted from hematite, its oxide ore.

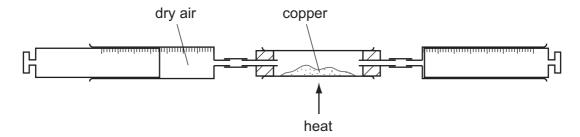
What is the metal and how is the oxide reduced?

	metal	method of reduction
Α	Αl	electrolysis
В	Αl	heating with carbon
С	Fe	electrolysis
D	Fe	heating with carbon

31 Iron is a metal that rusts in the presence of oxygen and water.

Mild steel is used for1..... and is prevented from rusting by2......

Stainless steel is prevented from rusting by3...... it with another metal.


Which words correctly complete gaps 1, 2 and 3?

	1	2	3
Α	car bodies	greasing	covering
В	car bodies	painting	mixing
С	cutlery	greasing	covering
D	cutlery	painting	mixing

32 In which row is the air pollutant **not** correctly matched with its source?

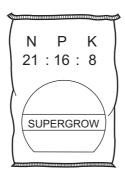
	air pollutant	source
Α	carbon monoxide	incomplete combustion of fuels
В	lead compounds	burning petrol in cars
С	nitrogen oxides	decomposing vegetation
D	sulfur dioxide	burning coal and other fossil fuels

33 Dry air is passed over hot copper until all the oxygen has reacted.

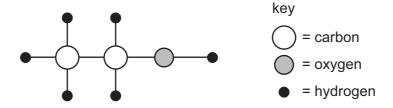
The volume of gas at the end of the reaction is 120 cm³.

What is the starting volume of dry air?

A 132 cm³


B 150 cm³

C 180 cm³


D $600 \, \text{cm}^3$

© UCLES 2011 0620/13/O/N/11

- 34 Which pollutant gas is produced by the decomposition of vegetation?
 - A carbon monoxide
 - **B** methane
 - C nitrogen oxide
 - **D** sulfur dioxide
- 35 Which combination of chemical compounds could be used to produce the fertiliser shown?

- A NH_4NO_3 , $Ca_3(PO_4)_2$
- **B** NH_4NO_3 , $CO(NH_2)_2$
- C NH₄NO₃, K₂SO₄, (NH₄)₂SO₄
- **D** $(NH_4)_3PO_4$, KC1
- **36** The diagram represents the molecule of an organic compound.

What is the name of the compound?

- A ethane
- B ethanoic acid
- **C** ethanol
- **D** ethene

37 The table shows the composition of four different types of petroleum (crude oil).

fraction	Arabian Heavy /%	Arabian Light /%	Iranian Heavy /%	North Sea /%
gasoline	18	21	21	23
kerosene	11.5	13	13	15
diesel	18	20	20	24
fuel oil	52.5	46	46	38

Which type of petroleum is best for the motor vehicle industry?

- Arabian Heavy
- Arabian Light
- C Iranian Heavy
- North Sea D

38 Which pair of compounds are members of the same homologous series?

$$C = C$$

39 Petroleum is a very important raw material that is separated into more useful products.

Which terms describe petroleum and the method used to separate it?

	petroleum is a	method used to separate petroleum
Α	compound	cracking
В	compound	fractional distillation
С	mixture	cracking
D	mixture	fractional distillation

- **40** When glucose is fermented, ethanol is formed together with
 - A carbon dioxide.
 - B ethene.
 - C methane.
 - **D** oxygen.

DATA SHEET
The Periodic Table of the Elements

	0	4 H Helium	7	50	Ne	Neon 10	40	Ā	Argon 18	84	궃	Krypton 36	131	×	Xenon 54		R	Radon 86				175	Ľ	Lutetium 71		בֿ	Lawrencium 103
-	=			≘ L	_	Fluorine 9	35.5	CI	Chlorine 17	80	Ā	Bromine 35	127	I	lodine 53		¥	Astatine 85				173		E		٥	Nobelium 102
	>			۶ (0	Oxygen 8	32	တ	Sulfur 16	79	Se	Selenium 34	128	<u>e</u>	Tellurium 52		Ъ	_				169	T	Thulium 69		Md	Mendelevium 101
	>		:	4 1	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122		Antimony 51	509	ä	Bismuth 83				167	ш	Erbium 68		Fm	
	≥			77	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119		Tin 50	207	Pb	Lead 82				165	웃	Holmium 67		Es	Einsteinium 99
	=		:	= (n	Boron 5	27	Ν	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	11	Thallium 81				162	۵	Dysprosium 66		ర	Californium 98
										65	Zn	Zinc 30	112	ပ္ပ	Cadmium 48	201	Η̈́	Mercury 80				159	Q L	Terbium 65		æ	Berkelium 97
										64	Cn	Copper 29	108	Ag		197	Αn	Gold 79				157		Gadolinium 64			
Group										59	Z	Nickel 28	106	Pd	Palladium 46	195	꿉	Platinum 78				152	Eu	Europium 63		Am	Americium 95
Ğ										59	ပိ	Cobalt 27	103	묎	Rhodium 45	192	Ir	Iridium 77				150		Samarium 62		Pu	Plutonium 94
		T Hydrogen	_							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	Os	Osmium 76					Pm	Promethium 61		N	Neptunium 93
										55	M	Manganese 25		ဥ	Technetium 43	186	Re	Rhenium 75				144	Nd	Neodymium 60	238	⊃	Uranium 92
										52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	≯	Tungsten 74				141	P	Praseodymium 59		Ра	Protactinium 91
										51	>	Vanadium 23	93	Q	Niobium 41	181	Та	Tantalum 73				140	S	Cerium 58		ᄕ	Thorium 90
										48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72							nic mass	lod	iic) number
										45	Sc	Scandium 21	88	>	Yttrium 39	139	La	Lanthanum 57 *	227	Ac	Adinium 89	001100	orion prion	5	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		•	ຶ ເ	Re	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Ва	Radium 88	*58_71 Louthonoid corios	30-7 I Lantinanold sene 190-103 Actinoid series		a a	× ×	В
	_			`:	5	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85		Rubidium 37	133	Cs	Caesium 55	ı	<u>ት</u>	Francium 87	* 50 71 1	100-7 L			Key	۵

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.